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Global greenhouse gas emissions GtCO:e /year

Annual CO, emissions
Carbon dioxide (CO,) emissions from fossil fuels and industry". Land-use change is not included
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Types Carbon Sequestration Processes

SUSTAINABLE FOREST MANAGEMENT AND CARBON STORAGE
An Ontario boreal forest example with wildfire suppression

DECAYING FORESTS
RELEASE CARBON

ATMOSPHERE

Carbon remains stored
when wood fiber is recycled

HEALTHY FORESTS
STORE CARBON

HOW SOIL STORES CARBON

Some CO2 isreleased
back into the air

Plants absorb CO2 from the
air to make carbon-rich
leaves, stems, and roots

A5 )
b S = s

Soil organisms feed on

dead leaves and roots,
locking carbon underground
wooD RENEWABLE BIOENERGY
PRODUCTS is produced from mill
store carbon and foest residues

s v <
e et b "J-g
Old forests release their stored
carbon slowly as they decay or
rapidly through wildfire

https://www.climatecentral.org/climate-matters/solutions-series-capturing-carbon-in-soil-2022

Growing forests absorb carbon
and release oxygen

practices ensure the carbon
cycle continues

https://files.ontario.ca/mnrf-sustainable-forest-mgmt-carbon-storage.png
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https://emeraldreview.com/2022/10/the-ocean-and-carbon-

sequestration-leveraging-the-oceans-carbon-capture-potential/
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High Carbon Storage Efficiency in Lakes and Ponds
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Franco-Cisterna B, Drost AM, van Santvoort V, Sarkis S and McGowan S (2024) Freshwater Ecosystems:

Carbon Sequestration Champions. Front. Young Minds. 12:1302239. doi: 10.3389/frym.2024.1302239

Although inland waters cover only 4% of Earth's surface,
they store 11% of global carbon, making them the most
efficient carbon sinks per unit area, with a carbon storage
density of 2.75%, compared to 1.40% for land and 0.76%
for oceans.

Lakes & ponds store large amounts of carbon despite their
small area.

Algae & bacteria absorb CO, via photosynthesis.
“Lakes have a more significant potential for carbon

sequestration per unit area (0.87 kgC-m-2-a-1) than the
ocean and forest ecosystems. ”

Tian, Y., Zhao, Y., Zhang, X., Li, S., & Wu, H. (2023). Incorporating carbon sequestration into lake management:
A potential perspective on climate change. Science of the Total Environment, 895, 164939.
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Surface water bodies of India
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Total number of waterbodies: 8,51,121
State Water bodies|Percentage eGujarat's 1.91% share is lower compared to neighboring
Gujarat 16,273 1.9% larger states.
Madhva Pradesh 65.940 2 79, eDespite being a semi-arid region, Gujarat holds a
adnya rrades ’ L0 considerable number of water bodies.
Maharashtra 40,106 4.7% eThere's scope for improving water conservation, storage,
Rajasthan 82,075 9.6% and mapping strategies to boost sustainability.

Source: India Water Resources Information System



Need of the study

THE TIMES OF INDIA

City's wetlands disappearing at alarming rate

TNN | Nov 28, 2023, 0828 AM IST

Ahmedabad: Considering the rate at which lakes and wetlands are disappearing in Ahmedabad, there are the
obvious villains to blame — roads, property construction and civic amenities. The city's lakes have been degrading
and disappearing at an alarming rate, according to a new study by researchers at Gujarat University's department
of botany, bioinformatics and climate change impacts management.

The study conducted by Vishwa Kuchara, Charan Ronak, Archana Mankad and Hitesh Solanki examined 11
wetlands in the city and found that nearly 50% of them had shrunk in the past 23 years and 40% were
redeveloped.

The number of lakes in the city plummeted from 603 in 1999, when the city area was 191 sq km to just 65 today, a
decline of over 80%. In 2001, the number of lakes had reduced to 137, while in 2006, when the city area further
expanded to 464 sg km, it dropped further to 122.

By 2017, according to a report prepared for Auda by Cept University, 65 lakes within Ahmedabad had garbage and
building rubble and were choked with encroachments. A recent study conducted by the Bhaskaracharya
Institute for Space Applications and Geoinformatics (BISAG) found that the lakes are shrinking at a decadal rate of
1.57 sq km.

“The number of lakes in the city has been constantly declining with the expanding municipal boundaries,”
observed a senior Ahmedabad Municipal Corporation (AMC) official in the Nort West Zone.

The Makarba lake has degraded by 14% in the past decade, according to a study conducted by Gujarat University.

Another example worth noting is the Vastrapur lake. More than two decades ago, it was visited by migratory
birds.

In those days, the lake's sub-catchment area was 11.52 lakh sgq m. Large amounts of water seeped through large
vacant surfaces, and natural drains fed the lake.

By 2000, vacant land reduced to 32% and when Auda began lake development in 2002, the built zone covered
60% of the area.

Today only 9% of vacant land remains.

With the area of Ahmedabad city expanding to 503 sq km in 2020, there is mounting pressure for development
that is likely to threaten the city's remaining lakes and small water canals, says a senior Auda official.

These precious waterbodies, located near Rancharda, Sanand Road, Shela and Ambli, face the imminent
prospect of obliteration under the relentless expansion of TP roads.
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Objectives

|dentify water quality parameters that affect carbon sequestration or
carbon emission potential of lakes

Assessment of water quality and carbon sequestration in stagnant water

bodies through satellite imagery

Developing prediction models for carbon sequestration and water
quality of lakes




Literature review



Carbon sequestration
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‘ Carbon sequestration is the process of capturing and storing atmospheric carbon dioxide in water.

: It is one method of reducing the amount of carbon dioxide in the atmosphere with the goal of reducing global climate
'\ change. Source: United States Geological Survey

CO, Flux - The exchange of carbon dioxide (CO,)
between the lake and the atmosphere. Lakes can
act as sources (releasing CO,) or sinks (absorbing
CO,) depending on factors like respiration,

photosynthesis, and organic matter
i decomposition.
Depth
3m
Carbon Storage — The amount of carbon

retained within the lake ecosystem, including
dissolved inorganic carbon (DIC), dissolved
organic carbon (DOC), and sediments. Some
carbon is buried long-term in lake sediments.

Primary Productivity — The rate at which aquatic plants and phytoplankton
produce organic matter via photosynthesis. It determines the lake’s ability
to sequester carbon and support higher trophic levels.



CO, Flux Calculation

FCO,=k * KH * (pCO2-pCO2air)

k represents the gas transfer velocity (m d™"), kH is Henry's constant, pCO2 is the partial pressure of CO,
in the lake water (patm), and pCO2air is the atmospheric CO, concentration (patm)

-0.5

SC
— 2
k=0251 % u? = (660)
Schmidt number (Sc)

SC=1911.1-118.11*T + 3.4527*T? - 0.04132*T3

ln K1=2.83655-2307.1266/T - 1.5529413 In (T) + (-0.20760841 - 4.0484/T)S%°> +0.08468345*S - 0.00654208*S™-5

ln K2 =-9.226508 - 3351.6106/T - 0.2005743 In (T) + (-0.106901773 - 23.9722/T)S%° + 0.1130822*S - 0.008469343*S™-5

K, KK\ water _ | H2C 03]
(H+) = 10"PH Qp = (1 } [Hi] } [‘le_,_]i) [H,CO3*]=a0-DIC pCOy Ky

F=FCO, * area * days

| A positive FCO2 corresponds to CO, emission from water to the atmosphere, whereas a negative value indicates that carbon is absorbed in water. This :
' distinction is crucial in understanding the role of urban lakes in either mitigating or contributing to atmospheric CO, levels

[1]Re-estimating China's lake CO2 flux considering spatiotemporal variability [2] High Emissions of Carbon Dioxide and Methane From the Coastal Baltic Sea at the End of a Summer Heat Wave [3] Relationship Between Wind Speed and Gas Exchange Over the Ocean
[4] Thermodynamics of the carbon dioxide system in the oceans [5] AQUATIC CHEMISTRY



Carbon storage

This equation provides a bulk estimate of the amount of
carbon present in the water body at a given time. It is
important for understanding the lake’s potential to act as

a temporary or long-term carbon sink

SC =(DOC+DIC)* h* S

SC = The carbon sequestration of water body carbon
storage

DOC = the concentration of dissolved organic carbon in
water (mg/L)

DIC = the concentration of dissolved inorganic carbon in
water (mg/L)

h = the depth of the lake(m)

S =the water area

Chen, B., Zhang, M., Yang, R., & Tang, W. (2023). Spatiotemporal variations in the carbon sequestration capacity of plateau lake
wetlands regulated by land use control under policy guidance. Land, 12(9), 1695.

Primary Productivity

Carbon Sequestration = Average Primary Productivity X

Lake Area
PPey=0.66125 x P8, X (Ey/ (Eq +4.1)) X Zey X Copt X Dirr

. PP, =Primary productivity in the euphotic zone (mg C m*d")
. P8, = Optimal photosynthetic rate per unit chlorophyll (mg C mg'Chl-a h')

. EO = Daily surface irradiance (mol photons m=2 d™"), assumed between 20

and 23
« Zeu = Euphotic zone depth (m)
. Copt = Chlorophyll-a concentration in surface water (mg m°)
o Dirr=Daily photoperiod in hours

PBopt=1.2956 +2.749 x 107'T +6.17 x 1072T* - 2.05 x 107°T° + 2.462 x 10™°T" -
1.348 x 107*T° +3.4132 x 107°T® - 3.27 x 1071’
Zeu =1.7239*SD +0.1685

Tian, Y., Zhao, Y., Zhang, X., Li, S., & Wu, H. (2023). Incorporating carbon sequestration into lake management: A potential perspective on climate change. Science of the Total
Environment, 895, 164939.



CO, calculation based on modelling technique

Satellite imagery extracts lake parameters like chlorophyll-
a, water temperature, transparency, and radiation levels. ( R )
Lakes are classified into eutrophic, DOC, and endorheic
based on their biogeochemical characteristics and carbon
processes.

Carbon cycle parameters vary for each lake type, including
factors like dissolved organic carbon (DOC), CDOM, and
land use (LULC).

Advanced modeling techniques such as regression,
analytical models, and machine learning are applied to E\troohic lakes:
estimate long-term CO, fluxes. Sore e
The central carbon cycle includes processes like

Carbon cycle parameterization for different lakes Regional application
~

NI N B e
( Eutrophic DOC-rich (" Endorheic Model development
lakes lakes lakes .

chi-a M LuLe

Chl-a

Long-term CO,

Regression model

=

Analytical model

el

photosynthesis, respiration, mineralization, and ey | \ N e
ca rb ohate eq u i li b ri um. :H::izp"a?on o = g PAR: Photosynthetically active radiation
. . . . RpREaNAiE CQIDRU : M Endorheic T, Water temperature
This framework enables regional CO, monitoring, Chl-a: Chlorophyl-a lakes: lakes: UVR: Utraviolt radiation
. . . . CDOM: Colored dissolved organic matter Production Dynamic Z.: Transparen
supporting climate impact assessments and sustainable dominated belance g

lake management.

Duan, H., Xiao, Q., & Qi, T. (2023). Measuring lake carbon dioxide from space: Opportunities and challenges. The Innovation Geoscience, 1(2), 100025.
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Summary of literature review

Three main methods to estimate carbon sequestration in lakes were identified:

CO, Flux Method - Calculates the net exchange of CO, between the lake surface and atmosphere.
Carbon Storage Method - Measures the amount of carbon stored in water and sediments.

Primary Productivity Method - Estimates the amount of carbon fixed by aquatic plants and algae through
photosynthesis.

For each method, standard formulas were reviewed to quantify carbon sequestration accurately.

Satellite-based approach is widely used for large-scale assessments, enabling:

Detection of lake boundaries using NDWI (Normalized Difference Water Index) from temporal remote sensing
data.

Estimation of lake-specific parameters such as chlorophyll-a, water temperature, DIC, and transparency.

Different lake types (eutrophic, DOC, and endorheic) were studied, each showing unique carbon dynamics and
influencing factors.

Various modeling techniques (e.g., regression, analytical models, machine learning) are applied to:

Predict long-term CO, fluxes.

Support regional carbon budget estimation and climate policy planning.



Required Datasets and Data Sources

Tool/Software
Data source
Used

Water Body Sentinel-2 MSI satellite imagery ArcGIS Pro, Google
Identification (10m resolution) Earth Engine (GEE)

Lab Testing of Water Certified laboratory analysis of

2 Sermlas e sanmles Laboratory Analysis
, Bmvae  SECTnets bl Googs o cnan
Extraction P (GEE)

water sample



Methodology

Literature
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NDWI: Normalized Difference Water Index
DIC: Dissolved inorganic carbon

DOC: Dissolved organic carbon
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Stagnant Water Bodies Detect
|

[ Methodology of water bodies detection | [Water bodies detection using ArcGIS Pro ]
Satellite Satellite Satellite I
image(01/2025) image(11/2024) image(5/2024) I Ahmedabad Lakes
v - "
> NDWI < |
! !
Thresholding .
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Raster data to .
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[Water bodies detection using Google Earth Engine ]
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Using Google Earth Engine and Sentinel-2 data, approximately 130
water bodies were identified through NDWI index analysis for the

Ahmedabad District.

*Manual Method: Involves downloading satellite images
and processing them in ArcGIS Pro to compute NDWI and
extract lake boundaries manually.
* This process is time-consuming, repetitive, and
less efficient for temporal analysis.

*Google Earth Engine (GEE) Method: Enables cloud-based
processing of large-scale temporal satellite data (e.g.,
Sentinel-2) and automatic NDWI calculation.
» Offers fast, accurate, and scalable lake area
extraction across multiple timeframes.

Conclusion: Due to its efficiency and reliability, the GEE
method was adopted in this study for calculating lake area
and monitoring temporal changes.



Selected Lakes for Calculation of Carbon Sequestration

[1] Chharodi Lake [2] Malek Saban Lake

' Study Lakes
B Water Bodies

L AMC Ward
Boundary

T T 1111
0 3 6 Km

Source: Google Earth Pro



Calculation of Carbon Sequestration based on ground truth data

Column1 |Column2| Column3 Column 4 Columnb5 Column 6 Column?7 Column 8 Column9
Temperature Salinity Chlorophyll-A DOC DIC Area Depth
Lake Name PH Co mg/L ug/L mg/L mg/L m? m
Chharodi Lake 9.5 28 0.4536 5.1 12 60 25502.9 3.9
Makrba Lake 9.1 27 0.432 5.1 6.1 48 63606.8 10.8
Shilaj Lake 9.3 29 0.2898 17 5.8 35 39412.7 6.5
Isanpur Lake 9.3 28 0.1872 - 5.9 47 27115.4 -
Malek Saban 9.1 29 0.1764 - 5.3 60 70294.8 7.8

Column 1:- Selected Lakes for carbon sequestration calculation
Columns 2 to 7:- Water quality parameters (Ground measurements)

Column 8:- Lake area based on the GEE method
Column 9:- Lake depth




CO, Flux Calculation

Example of Chharodi Lake
Data Required: pH-9.5, Temperature- 28°C, Salinity- 0.4536 ppt, DIC- 60 mg/L, wind speed(u)- 3.5 m/s, K, =
0.03356, ,CO? air—0.000355 atm
SC=1911.1-118.11*T + 3.4527*T2 - 0.04132*T3
=1911.1-118.11*28 + 3.4527*(28)? - 0.04132*(28)3

SC =403.88
B , sc \—0.5

k=0.251 * u? (660)
k = 0.251 * 3.52 « (403'88)_0'5

' ' 660

k=3.90
(H*) = 107PH
= 10-9.5

(H") =3.16 x 107" mol/l
Temperature =301.15K
In K1 = 2.83655 - 2307.1266/T - 1.5529413 In (T) + (-0.20760841 - 4.0484/T) *S°5 + 0.08468345*S -
0.00654208*S™->
= 2.83655 - 2307.1266/301.15 - 1.5529413 In (301.15) + (-0.20760841 - 4.0484/301.15) *0.45360-° +
0.08468345*0.4536 - 0.00654208*0.4536"->
K1=1.03x10°¢
In K2 = -9.226508 - 3351.6106/T - 0.2005743 In (T) + (-0.106901773 - 23.9722/T) *S%% + 0.1130822*S -
0.008469343*S7->
=-9.226508 - 3351.6106/301.15 - 0.2005743 In (301.15) + (-0.106901773 - 23.9722/301.15) *0.4536 ©5
+0.1130822*0.4536 - 0.008469343*0.4536 '-°
K2=4.73 x1010
a0=[1+(K1/[H*]) + (K1K2/[H*]?)]’
=[1+(1.03 x 10/3.16 x 1071%) + (1.03 x 1076)(4.73 x 10-19)/(3.16 x 10-10)2)]"
=0.00012



CO, Flux Calculation

DIC = 0.005 mol/L
[H,CO;] =a0-DIC
=0.00012 x 0.005 = [H,CO,]1=6.12x 107
pCO,water =TH,C0O,] / K
=6.12x107/0.03356
=1.82x10° atm
FCO,=k * K, * (pCO,-pCO,air)
=3.93 * 0.03356 * (1.82x 10°-0.000355)
=-4.44 x 10° mol/m?/day
F=FCO, *Lake area * days in Year
=-4.44x10°*25502.9 * 365
=-413.51 mol/year
CO, Flux=-4962.33 gC/year

Carbon Storage Calculation

Example of Chharodi Lake
Data Required: DOC -12 mg/L, DIC -60 mg/L, h-3.9 m, S - 25502.9 m?
SC =(DOC+DIC) *h* S

= (12 + 60) * 3.9 * 25502.9

=7161214.32 mg/L

=7161.21gC



Primary Productivity Calculation

Example of Chharodi Lake
Data Required: Temperature — 28 °C, Chlorophyll-a - 5.1 mg/m3, E,- 21, SD - 0.34m, Dirr—12 hr
PBopt = 1.2956 +2.749 x 107'T+6.17 x 107°T* - 2.05 x 1072T° + 2.462 x 107°T* - 1.348 x 107*T° + 3.4132 x 107°T° - 3.27 x 10~°T’
=1.2956 +2.749 x 107"(28) + 6.17 x 107(28)2 - 2.05 x 1073(28)3 + 2.462 x 1073(28)% - 1.348 x 107%(28)5+ 3.4132 x 107°(28)¢ - 3.27 x 107%(28)7
PB,pi= 14807.33
Zeu=1.7239 *SD + 0.1685
=1.7239 *0.34 + 0.1685
=0.754 m
PPey =0.66125 x P, x (Ey / (Ey + 4.1)) X Zey X Copt X Dirr
=0.66125 x 14807.33x (21/(21+ 4.1)) x 0.754 x 5.1 X 12
= 378330.52 mgC/m2/day
Carbon Sequestration = Average Primary Productivity x Lake Area
= 378330.52 x 25502.9
= 9648525495 mgC/ day
= 9648.52 gC/day



Calculation of Carbon Sequestration

Lake Name C;ociylll:;( Carbog;torage Primarzg;g:l;ctivity
Chharodi Lake -4962.33 7161.21 9648.52
Makrba Lake -10627.3 37164.18 22442.92
Shilaj Lake -7801.33 10452.24 64149.61
Isanpur Lake -5113.15 - -
Malek Saban -11938.4 35803.95 -

————————————————————————————————————————————————————————————————————————

:’ Due to the absence of this critical water quality parameter, carbon sequestration could not be
l\calculated for these two lakes



Multiple Linear Regression

Multiple Linear Regression is a statistical method used to model
the relationship between one dependent variable and two or

Y
more independent variables. A

=
E /"\
=
Equation Format S
Y=B0+B1X1+B2X2+...+BnXn+e S
c
*Y: Dependent variable (e.g., carbon-related parameter) §
a
*X,, X,...: Independent variables (e.g., band values, weather data)
*B3: Coefficients, : Error term > X
I ndEpE ndE nt Vﬂriab IE ﬁ?t;g(if;;vww.analyticsvidhya.com/
Advantages ** R2 (coefficient of determination) ) o
Easy to implement , *R” =1: Perfect prediction (all data
: e R” measures how well the points fit the model exactly)
Good interpretability independent variables explain the 2 '
Useful baseline for model comparison . P e P . *R”=0: Model explains none of the
variability of the dependent variable. vyariability
https://www.spiceworks.com/tech/artificial- 0<R2<1

. 2
intelligence/articles/what-is-linear-regression/ ngher R” = Better model performance


https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-linear-regression/
https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-linear-regression/

Water quality

parameters Equatlon

o 6.15 +(0.00094 * WVP)+(0.00393 * B3)+(-0.000712 * B11) + 0.5 o1

(0.00086 * B1) +(0.108 * TCI_B) + (-0.014 * B2) ' '

- * * _ *
oic 82.56+(-0.281* AOT)+(0.0219 * WVP)+(-0.0344 * B11) + (0.0232 | 0.0
*B12)

cobp 198.78+(-0.210* B8A)+(0.114 * B7)+(-0.473 * AOT) + (0.077 *B6) |  0.58 0.50
Turbidity 164.64 +(-0.49759 * AOT)+(0.39329 * B7)+(-0.39857 * B8A) 0.56 0.51

: A model was built to predict water quality parameters using only 32 data points for training and :

:_testing, which resulted in low accuracy. !



Satellite

Technique to build a water quality parameter prediction equation

-~ -
—
—

Raster
Bands Value

Water Sample Collection

Estimated
(or predicted) Estimate of Estimate of the
Y value for the regression  regression slope
observation i
\ int%rcept
Value of X for

~

< observation i
Y =b, +b,X;

Equation for prediction

a Python R R Studio



-

o w 0 = o v Ak W N

B1

514
434
405
239
639
438
354
709
555
358
373
738
459
334
356
615

B2
833
590
50&
564

1236
1224
720
1036
835
5628
574
601
527
580
6ba
932

B3
1122
794
614
688
1650
1768
1126
1362
1184
966
838
884
g74
914
1058
1254

B4
1066
784
542
o380
2070
2282
294
1240
1274
774
738
928
592
744
876
1384

BS

1722

898
1111
1271
2060
2759
1187
1660
1449
1435
1189
1495
1418
1523
1471
1907

Beé
2477
1000
2962
2177
2322
2808
1927
2112
1714
1963
1587
1717
3585
2451
3002
2026

B7
2687
1027
3819
2313
2492
2859
2435
2428
1630
2076
1948
1689
3877
2691
2798
1690

Data set for modelling

ES
2710
1157
3700
3311
3189
2813
3465
20696
2083
1773
1804
1278
4157
3596
3536
23380

Independent variable

BESA

2635

949
3492
2503
2603
2828
1786
2038
1616
1795
1836
1686
4128
2625
2608
1795

B9

2732

799
2682
1346
2563
2013

994
2315
2296
1094

948
2046
2624
1524
1840
2098

B11

2015

920
1522
1304
2693
3722
1032
1921
1452
1225
1362
1891
1631
1388
1129
1800

B12
1273
673
895
T80
2431
3843
ab3
1576
1351
998
1163
1860
209
823
781
1280

AOT

238
234
168
168
168
168
168
168
168
168
168
168
300
300
300
300

Wvp

1243

378
2080
1681
1915
1980
1497
1990
1458
1717
1673
1727
1772
1526
1738
1785

SCL

TCILR

110
81
57
72

212

229
91

168

131
B0
75

101
b2
78
50

140

TCLG

114
a1
a3
a0

169

179

114

139

121
98
ar
91
a0
94

107

133

TCI B

85
59
52
58
125
129
75
104
ar
62
58
60
53
60
71
95

Dependent variable

Dissolved.Inorganic.Carbon
3.240
3.350
45.000
51.000
44.000
41.000
57.000
59.000
48.000
47.000
53.000
53.000

5.886

6.003

5.562

5.051



Python Language Script(MLR

import numpy as np 'T‘ \ll él ? L |
import pandas as pd

from sklearn import linear_model "
from sklearn.model_selection import train_test_split,cross_val_score lmpDr"t math

from sklearn.preprocessing import StandardScaler impur“t numpy as np
from sklearn.metrics import r2_score

import matplotlib.pyplot as plt

import statsmodels.api as sm # P.F"E'Efi:ti-_’rns

y_pred = model.predict{X)
data = pd.read_csv("D:/ADI_data/ADI.csv")
# --- Manual R? Calculaetion (Pearson) ---
sum_y = y.sum() # Sum of actual y (PH)

data_cleaned = data.dropna(subset=['Dissolved Inorganic Carbon'])

band columns = ['B1', 'B2', 'B3', 'B4', 'B5"', 'Be', 'B7', 'B8', 'B8A', 'B9', 'Bl11', 'B12','AOT','WVP','SCL','TCI_R','TCI_G','TCI_B'] Sum rEd - F‘Ed Sum 5"'11 o 'I"E'd'l:.l'_-tfﬂ.
X = data_cleaned[band_columns] _y_p Y_p . () um of p ¥
y = data_cleaned[ 'Dissolved Inorganic Carbon'] sum_yy_pred = (y * y_pred).sum() Sum of {y * yv_pred)

sum_y2 = (y**2).sum()
sum_y_pred2 = (y_pred**2).sum()

model=linear_model.LlinearRegression() n = lE‘n{}"}
model.fit(X,y)

Sum of y?
Sum of y_pred?
Number of samples

#X_train, X_test, y train, y test = train_test_split(X, y, test_size=6.15, random_state=34)

* LinearRegression # Peagrson correlation coefficient (r)
LinearRegression() numerator = {n * sum_yy_pred) - (sum_y * sum_y_pred)
et sden ¢ Pap 0025 0875 denominator = math.sqrt{(n * sum_v2 - sum_y**2} * (n * sum_y_pred2 - sum_y_pred**2))

abc=sm.add_constant (X) -

- const 416753 40978 1017 0328 -46.852 130203 = tDr ll.l' dEnUITIl I'IﬂtDF‘
abcl=sm.0LS(y,abc) r numera
ach:ah:l.fit() B1 -00321 0019 -1688 0115 -0073 0.009

abc2. summary () B2 00852 0107 0893 0388 -0135 0325

. B3 07454 0140 1035 0319 -0158 0449 a‘r" H—EL]'UGI"E‘CI' fRz;l
OLS Regression Results B4 02412 0122 -1982 0069 -0504 002 2 = xx 7
Dep. Variable: Dissolved Inorganic Carbon R-squared: 0972 BS 00023 0012 085 0856 -0024 0029 r =
. B6 -00169 0014 -1195 0254 -0047 0014 print('F"Rl {I’*'IanL.al - Pearson r"llEt"IDIj} = {r‘Z: .E'F}"}
Model: OLS  Adj. R-squared: 0.933
B7 00065 0010 0645 0530 -0015 0028
Method: Least Squares F-statistic: 25.02 B8 00012 0005 0228 0824 -0070 0012
BBA 00056 0013 0445 0864 -0022 0033 # --- Manual ﬂﬂ'_‘,"usted R? Calculation ---
Date: Sun, 06 Apr 2025 Prob (F-statistic): 2.98e-07 B9 00037 0004 083 0420 -0006 0013 p = X ShEpE[l] # Number of ¥feagtures
Time: 16:08:22  Log-Likelihood:  -88.421 BI1 00413 0016 -2506 0026 -0077 -0006 . i T -0 :
B12 00274 0012 2303 0038 0002 0053 adj_r'z =1 - {(1 - rz} E |:|'| - 1:' .-'|l |::|'| -p - 1:':'
No. Observations: 32 AlC: 214.8 AOT -02400 0027 -8907 0000 -0299 -0.183 printl:'F" gdjus—eﬂ- Rz { Manual :| = {ﬂdj r2: E'F}":I
Df Residuals: 13 BIC: 2427 WVP 00258 0005 4959 0000 0015 0037 . T v - - o
SCL 51343 8309 0618 0547 -12816 23.084
Df Model: 8 TR o e v oo o s R* (Manual - Pearson Method) = @.971941
Covariance Type: nonrobust TG -13151 1533 -0858 0407 4627 1997 Ptdjus‘ted = {Manual:] = @.933898
TCLB 08708 0947 0920 0375 -2917 1175
Omnibus: 0569 Durbin-Watson:  1.762
Prob(Omnibus): 0752 Jarque-Bera UB): 0674
Skew: -0.176 ProbUB): 0714

Kurtosis:  2.382 Cond. No. 248e+05



Python Language Script(CNN

?mpnr: num;y as nud history = model.fit(

import pandas as p . .
import tensorflow as tf X_train_scaled, y_train,
from tensorflow.keras.models import Sequential validation_split=@.28,

from tensorflow.keras.layers import ConviD, MaxPoolinglD, Flatten, Dense, Dropout, BatchNormalization,GlobalAveragePoolinglD
from tensorflow.keras.optimizers import Adam N
from sklearn.model selection import train_test_split batch_size=16,

from sklearn.preprocessing import StandardScaler call ks=[early stopping]
from sklearn.:etﬁics impuﬁt rg,scure e S e CEE
import matplotlib.pyplot as plt

from permetrics.regression import RegressionMetric )]

epochs=288,

verbose=1

Epoch 1/208
*, 'B6', 'B7', 'BS', 'BEA', 'B9', 'B11', 'B12','AOT','WWP’,'SCL','TCI_R','TCI_G','TCI_B'] 2/2 —————————— ]

data = pd.read_csv("D: /ADI_data/ADI
band_columns = ['B1', 'B2°, 'B3',

w

178ms/step - loss: 88.9593 - mae: 5.95@88 - val_loss: 72.7461 - val_mae: 8.5186

= data[band_colums].values
. PHY Epoch 2/208
y = data['PH'].values

22 ———————— 05 22ms/step - loss: 48.5527 - mae: 6.2550 - val_loss: 64.4819 - val_mae: 3.0142
X = X.reshape(X.shape[8], X.shape[1], 1) Epoch 3/2@@

22 ————————— 05 23ms/step - loss: 8.1267 - mae: 2.4333 - val_loss: 52.9595 - val_mae: 7.2646
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=38) Epoch 4/208

w

24ms/step - loss: 14.6374 - mae: 3.8254 - val_loss: 58.8831 - val_mae: 7.8579

scaler = StandardScaler() 2/ ————— 0
X_train_reshaped = X_train.reshape(X_train.shape[@], -1) Epoch 5/288
X_test_reshaped = X_test.reshape(X_test.shape[8], -1) 272 2
scaler. fit(X_train_reshaped) Epoch 6/200

='5tandard5caler; 2/ ————— 0
Epoch 7/208

w

21ms/step - loss: 18.7932 - mae: 2.8469 - val_loss: 52.7267 - val_mae: 7.2478

w

23ms/step - loss: 2.8723 - mae: 1.5166 - val_loss: 53.8420 - val_mae: 7.2679

iStandardscaler()|
22 ——————— 0s 25ms/step - loss: 3.2744 - mae: 1.6342 - val_loss: 58.5353 - val_mae: 7.8999
X_trai led ler.transform(X_trai haped).reshape(X_train. shape) Epoch /200
__train_scaled = scaler.transform(X_train_reshaped).reshape(X_train.shaps
e ] o SEEr e T e e e e S S 0) 2/2 ———————————— 0s 19ms/step - loss: 1.7955 - mae: 1.0784 - val loss: 46.8484 - val _mae: 6.8287
Epoch 9/208
22 ——————— 0s 22ms/step - loss: 3.1511 - mae: 1.3466 - val_loss: 42.8836 - val_mae: 6.5323
model = Sequential([ Epoch 18/200
ConvlD(filters=32, kernel_size=1, activation="relu', padding='same', input_shape=(X_train.shape[1], 1)}, 2/2 @s 25ms/step - loss: 3.6014 - mae: 1.6328 - val loss: 30.5976 - val mae: 6.2772
BatchMormalization(), T t - ! ) = v
ConvlD(filters=32, kernel_size=1, activation="relu', padding="'same'), Epoch 11/209
BatchMormalization(), 2f{2 ———————————— @s 21ms/step - loss: 4.7314 - mae: 1.7271 - val_loss: 37.86@5 - val_mae: &.1355
MaxPoolinglD(pool_ size=2), Epoch 12/288@
2/2 ———————— 05 24ms/step - loss: 3.826@ - mae: 1.4153 - val_loss: 37.5164 - val_mae: 6.1141
ConviD(filters=64, kernel_size=1, activation="relu', padding='same'}, Epoch 137284
BatchNormalization(}, 2/2? ———————————— @5 22ms/step - loss: 1.6443 - mae: 1.8137 - val_loss: 37.8969 - val_mae: 6.8697
ConvlD(filters=64, kernel_size=1, activation="relu', padding='same'), Epoch 14/208

BatchMormalization(),
MaxPoolinglD{pool_size=2),

) . .. . y_train_pred = model.predict(X_train_scaled).flatten()
ConvlD(filters=128, kernel_size=1, activation='relu', padding='same'}, y_test_pred = model.predict(X_test_scaled).flatten()
BatchMormalization(),

X . 1/1 ——————————————— 05 114ms/step
GlobalAveragePoolinglD(), # Reploces Flatten{) for variable Length 1/1 ————————— gs 116ms/step
Dense{128, activation="relu'}, sum_x = y—:ra?”'“’“é) ®

i : . . y_train_pred.sum

Dense{64, activation='relu'), © T et © . (b el o (d)
Dense(l,activation="1linear') # Output Layer for regression sum_x2 = {y_train**2).sum(}
1 sum_y? = {y_train_pred**2).sum()

n = len(y_train)
optimizer = Adam(learning_rate=8.0886)

- P e 2 numerator = (n * sum_xy) - (sum_x * sum_y
model.compile(optimizer=optimizer, loss='mse’', metrics=['mae']) ¢ Lxy) - (sum Lv)

denominator = math.sqrt((n * sum_x2 - sum_x**2) * (n * sum_y2 - sum_y**2))

r = numerator / denominator
model . summary () /

R2 = rer
print(f"Pearson correlation coefficient (r) = {r:.6F}")
print(f"R-squared (R2) = {R2:.6f}")

Pearson correlation cosfficient (r) = ©.525343
R-squared (R2) = 8.275985

CNN:-Convolutional Neural Networks



R Language Script

setwd("D:/ADI_data/")

Data =read.csv("ADIl.csv")

Data2 = Datal[,c(4:21,38)]

Data3=na.omit(Data2)

library("olsrr")

model = lm(Dissolved.Inorganic.Carbon~ .+B1, data = Data3)
a = ols_step_forward_p(model)

a

Coefficients:

Estimate Std.
7

(Intercept) 82.563546

AOT -0.281761 0
WvP 0.021946 0
Bll -0.034469 0
B12 0.023283 0

Signif. codes: O “#**’ (,

Residual standard error: 5.83 on 27 degrees of freedom
Multiple R-squared: 0.9453,
F-statistic: 116.6 on 4 and 27 DF,

model2 = Im(Dissolved.Inorganic.Carbon~AOT+WVP+B11+B12, data = Data3)

summary(model2)

Error t value

.589897 10.878
.016384 -17.198
.003938 5.573
.006547 -5.265
.005628 4.137

001 ***’ 0.01

Pri=1tl)
2.26e-11
4.50e-16
6.57e-06
1.50e-05
0.000308

¥ 0.05 .7 0.1 °

W
wdde
wdde
dedr
dedr

Adjusted R-squared:
p-value: < 2.2e-16

7

1



Makrba lake time series for 2018 to 2025

2018

Esri, TomTom,

Garmin, METI/NASA, USGS

sri, TomTom, Garmin, METI/NASA, USGS

i, TomTom, Garmin, METI/NASA, USGS

Esri, TomTom,

Garmin, METI/NASA, USGS

TomTom, Garmin, METI/NASA, USGS

2023

Esri, TomTom,

Garmin, METI/NASA. USGS

Year Area(m?) CO2 Flux(gC/year)
2018 48,835.95 53759.24
2019 65,969.77 -9819.17
2020 72,200.23 -5501.71
2021 73,574.62 -7161.03
2022 70,184.49 -5892.49
2023 65,969.73 -9294.5
2024 65,420.01 -7330.7
2025 63606.8 -10627.3

Esri, TomTom,

Garmin, METI/NASA, USGS

ni, TomTom, Garmin, METI/NASA, USGS

Legend

B Makrba Lake

0 0.060.11 0.22 0.33

N
0.44
| Km

*2018 shows high positive CO, flux,
indicating strong carbon release

eFrom 2019 to 2025, all values are negative,
showing that the water bodies acted as
carbon sinks.

eThe area increased from 2018 to 2021,
peakingin 2021, then slightly declined.

*CO, absorption (negative flux) was highest
in 2025, suggesting better sequestration or
updated ground truth accuracy.



Malek Saban lake time series for 2018 to 2025

2023

Legend N

B Malek Saban Lake

0 0.070.14 0.28 0.42 0.56

[ ™ Km

Year Area(m?)  CO2 Flux(gC/year)
2018 | 73294.08 288303.94
2019 | 50656.91 -7450.87

2020 | 98290.58 8522.41

2021 | 92702.79 2476.73

2022 | 96916.51 -10884.22
2023 | 90595.91 -6311.80
2024 | 40855.19 -1396.03

2025 70294.8 -11938.4

*2018 had the highest CO, release in a large
area, indicating a strong carbon source that year.
From 2019 onward, there was a shift to
negative CO, flux in most years, suggesting that
the area acted more as a carbon sink.

2022 and 2025 recorded the highest CO,
absorption, marking strong carbon
sequestration.

eThe area fluctuated significantly year to year,
but larger area did not always correlate with
higher flux, suggesting influence from other
factors like water quality or temperature.



Chharodi Lake time series for 2018 to 2025

2018

2019

2020

2021

2022

2023

2024

2025

Legend N

B Chharodi Lake A

0 00501 021 032 042
i, IKm

Year Area (m?) CO2 Flux(gC/year)

2018 25448.04 271086.04
2019 24074.94 -3425.22
2020 21603.36 -1904.99
2021 13090.18 776.73
2022 21145.67 -1708.28
2023 25081.88 -3507.12
2024 25722.65 -889.81
2025 25502.9 -4962.33

*2018 shows an extremely high CO, emission,
indicating a strong carbon source.

*From 2019 onwards, CO, flux becomes mostly
negative, meaning the area starts acting as a
carbon sink.

*2021 is the only year with a slight positive flux, but
it's very low compared to 2018.

©2025 shows the highest carbon absorption among
all years, with a flux of -4962.33 gC/year.

eThe area remains relatively stable after 2020, but
CO, flux varies,



Isanpur Lake time series for 2018 to 2025

Year Area(m?) CO2 Flux(gC/year)

2018 23733.66 68010.14

2019 25841.29 -3830.41

2020 23367.13 9520.99

2018 2019 2020 2021 27004.53 -676.99
2022 25932.93 8802.95

2023 2199.26 -320.64

r 2024 28865.27 -3277.37

: o 2025 27115.4 -5113.15

2023 | e2018recorded the highest CO, emission.

*2019, 2021, 2023, 2024, and 2025 show

negative CO, flux, meaning the area acted as a
Legend I carbon sink in those years.
B Isanpur Lake A *2020 and 2022 again show positive flux, but
much lower than 2018, suggesting an occasional
0 0.040.09 047 026 034 return to carbon source behavior.
2025 '

—— JKm

*The area remains fairly consistent, except for

2023, where it drastically drops to 2,199.26 m?,
possibly due to dry-up or data anomaly.



Shilaj Lake time series for 2018 to 2025

Area(m?) CO2
Flux(gC/year)
1/ 2018 | 31413.68 77581.36
2019 | 30314.66 -3929.44
2018 2019 2020 2020 | 31871.61 10392.34
2021 37183.52 -2205.01
2022 | 40114.24 5264.03
2023 | 46708.37 -6893.31
i, i, 2024 | 35901.33 -3828.04
9 02 1 9 022 9 02 3 2025 | 39412.7 -7801.33
*2018 shows the highest CO, emission
Legend N * 2019, 2021, 2023, 2024, and 2025 show
B s Lo A nega?ive CO, flux, r.nea.ning the area
functioned as a carbon sink in those years.
" *The area size gradually increases from 2018
2024 2025 —— to 2023, peaking at 46,708.37 m? in 2023,

followed by a slight drop in 2024.



One-at-a-time (OAT) Sensitivity Analysis

-20% -15% -10% -5% +5% +10% +15% +20%

pH -1025.18 | -332.89 | -97.61 -21.47 4.588 5.311 5.4 5.541

T -12.49 -9.61 -6.6 -3.44 3.86 8.36 13.79 20.63

DIC 1.08 0.81 0.54 0.27 -0.27 -0.54 -0.81 -1.08
Wind speed -36 -27.75 -18.99 -9.75 10.25 21 32.25 44

pH has the strongest impact, even small decreases cause a large drop in CO, sequestration. Wind speed
increases CO, flux significantly, more wind leads to more sequestration. DIC shows less DIC, more sequestration.

Overall, pH and wind speed are the most sensitive factors influencing carbon sequestration in water bodies



Conclusion
Most lakes showed positive CO, flux (emission) in 2018 but gradually shifted to negative values, indicating increasing
carbon sequestration over time.
From 2019 onwards, several lakes consistently recorded negative flux values, reflecting improved conditions for carbon
uptake. While sequestration generally improved, fluctuations across years indicate the influence of environmental
factors and lake health dynamics.
Larger surface area doesn’t always mean higher sequestration. For example, in some years, smaller areas show better
performance, implying that the quality of water parameters (like pH, DIC, temp) plays a bigger role than area alone.
A small decrease in pH results in a large drop in CO,, flux, making acidification a major threat to carbon sequestration
efficiency.
Across all locations, 2018 consistently records the highest positive CO, flux, indicating carbon emission.
The limited dataset of only 32 sample points constrains the model's performance and generalization ability. The
current accuracy is suboptimal due to this data sparsity.
Future studies should focus on collecting more sample data across seasons and spatial locations to enhance model

training.
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