# Estimating Carbon Sequestration In Urban Water Bodies Using Remote Sensing And Modeling Techniques

**Guides:** Jay Shah and Tushar Bose

#### **Presented by:**

Ajay Patel (PGE23022) Master of Geomatics Faculty of Technology, CEPT University



# Background



 Fossil emissions: Fossil emissions measure the quantity of carbon dioxide (CO<sub>4</sub>) emitted from the burning of fossil fuels, and directly from industrial processes such as cement and steel production. Fossil CO<sub>4</sub> includes emissions from coal, oil, gas, flaring, cement, steel, and other industrial processes. Fossil emissions do not include land use change deforestation, solis, or vegetation.

#### Source:-https://ourworldindata.org/



| Year  | Value            | Increase from<br>Previous | Time Gap |
|-------|------------------|---------------------------|----------|
| 1970  | 181.72 million t | _                         | -        |
| 1984  | 361.56 million t | ~2×                       | 14 years |
| 1994  | 714.06 million t | ~2×                       | 10 years |
| 2008  | 1.4 billion t    | ~2×                       | 14 years |
| 2023  | 3.06 billion t   | ~2.2×                     | 15 years |
| 2025* | ~3.4 billion t   |                           | 2 years  |



Source:https://climateactiontracker.org/

## **Types Carbon Sequestration Processes**



#### > Soil Carbon Storage



https://www.climatecentral.org/climate-matters/solutions-series-capturing-carbon-in-soil-2022

## > Wetlands

#### Ocean Sequestration



https://www.arcticcirc.net/research-interests/gudasz-lake-carbon-cycles



https://emeraldreview.com/2022/10/the-ocean-and-carbonsequestration-leveraging-the-oceans-carbon-capture-potential/

# **High Carbon Storage Efficiency in Lakes and Ponds**



Franco-Cisterna B, Drost AM, van Santvoort V, Sarkis S and McGowan S (2024) Freshwater Ecosystems: Carbon Sequestration Champions. Front. Young Minds. 12:1302239. doi: 10.3389/frym.2024.1302239

Although inland waters cover only 4% of Earth's surface, they store 11% of global carbon, making them the most efficient carbon sinks per unit area, with a **carbon storage density** of **2.75%**, compared to 1.40% for land and 0.76% for oceans.

Lakes & ponds store large amounts of carbon despite their small area.

Algae & bacteria absorb  $CO_2$  via photosynthesis.

"Lakes have a more significant potential for **carbon** sequestration per unit area (0.87 kgC·m $-2\cdot a-1$ ) than the ocean and forest ecosystems."

Tian, Y., Zhao, Y., Zhang, X., Li, S., & Wu, H. (2023). Incorporating carbon sequestration into lake management: A potential perspective on climate change. Science of the Total Environment, 895, 164939.

# Surface water bodies of India



| State          | Water bodies | Percentage |
|----------------|--------------|------------|
| Gujarat        | 16,273       | 1.9%       |
| Madhya Pradesh | 65,940       | 7.7%       |
| Maharashtra    | 40,106       | 4.7%       |
| Rajasthan      | 82,075       | 9.6%       |

State

Total number of waterbodies: 8,51,121

•Gujarat's 1.91% share is lower compared to neighboring larger states.

•Despite being a semi-arid region, Gujarat holds a considerable number of water bodies.

•There's scope for improving water conservation, storage, and mapping strategies to boost sustainability.

# Need of the study

#### THE TIMES OF INDIA

#### City's wetlands disappearing at alarming rate

TNN | Nov 28, 2023, 08.28 AM IST

Ahmedabad: Considering the rate at which lakes and wetlands are disappearing in Ahmedabad, there are the obvious villains to blame — roads, property construction and civic amenities. The city's lakes have been degrading and disappearing at an alarming rate, according to a new study by researchers at Gujarat University's department of botany, bioinformatics and climate change impacts management.

The study conducted by Vishwa Kuchara, Charan Ronak, Archana Mankad and Hitesh Solanki examined 11 wetlands in the city and found that nearly 50% of them had shrunk in the past 23 years and 40% were redeveloped.

The number of lakes in the city plummeted from 603 in 1999, when the city area was 191 sq km to just 65 today, a decline of over 80%. In 2001, the number of lakes had reduced to 137, while in 2006, when the city area further expanded to 464 sq km, it dropped further to 122.

By 2017, according to a report prepared for Auda by Cept University, 65 lakes within Ahmedabad had garbage and building rubble and were choked with encroachments. A recent study conducted by the Bhaskaracharya Institute for Space Applications and Geoinformatics (BISAG) found that the lakes are shrinking at a decadal rate of 1.57 sq km.

"The number of lakes in the city has been constantly declining with the expanding municipal boundaries," observed a senior Ahmedabad Municipal Corporation (AMC) official in the Nort West Zone.

#### The Makarba lake has degraded by 14% in the past decade, according to a study conducted by Gujarat University.

Another example worth noting is the Vastrapur lake. More than two decades ago, it was visited by migratory birds.

In those days, the lake's sub-catchment area was 11.52 lakh sq m. Large amounts of water seeped through large vacant surfaces, and natural drains fed the lake.

By 2000, vacant land reduced to 32% and when Auda began lake development in 2002, the built zone covered 60% of the area.

#### Today only 9% of vacant land remains.

With the area of Ahmedabad city expanding to 503 sq km in 2020, there is mounting pressure for development that is likely to threaten the city's remaining lakes and small water canals, says a senior Auda official.

These precious waterbodies, located near Rancharda, Sanand Road, Shela and Ambli, face the imminent prospect of obliteration under the relentless expansion of TP roads.

How much the lakes is degraded in %





Source: Google Earth

# **Objectives**

Identify water quality parameters that affect carbon sequestration or carbon emission potential of lakes

Assessment of water quality and carbon sequestration in stagnant water bodies through satellite imagery

Developing prediction models for carbon sequestration and water quality of lakes

# Literature review

# **Carbon sequestration**

Carbon sequestration is the process of capturing and storing atmospheric carbon dioxide in water. It is one method of reducing the amount of carbon dioxide in the atmosphere with the goal of reducing global climate change. *Source: United States Geological Survey* 



**Primary Productivity** – The rate at which aquatic plants and phytoplankton produce organic matter via photosynthesis. It determines the lake's ability to sequester carbon and support higher trophic levels.

 $CO_2$  Flux – The exchange of carbon dioxide ( $CO_2$ ) between the lake and the atmosphere. Lakes can act as sources (releasing  $CO_2$ ) or sinks (absorbing  $CO_2$ ) depending on factors like respiration, photosynthesis, and organic matter decomposition.

**Carbon Storage** – The amount of carbon retained within the lake ecosystem, including dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and sediments. Some carbon is buried long-term in lake sediments.

## CO<sub>2</sub> Flux Calculation

## *FCO*<sub>2</sub>=*k* \* *KH* \* (*pCO*2–*pCO*2*air*)

k represents the gas transfer velocity (m d<sup>-1</sup>), kH is Henry's constant, pCO2 is the partial pressure of CO<sub>2</sub> in the lake water ( $\mu$ atm), and pCO2air is the atmospheric CO<sub>2</sub> concentration ( $\mu$ atm)

$$k = 0.251 * u^2 * \left(\frac{sc}{660}\right)^{-0.5}$$

Schmidt number (Sc)

**SC** = 1911.1 – 118.11\*T + 3.4527\*T<sup>2</sup> - 0.04132\*T<sup>3</sup>

 $ln K1 = 2.83655 - 2307.1266/T - 1.5529413 ln (T) + (-0.20760841 - 4.0484/T)S^{0.5} + 0.08468345*S - 0.00654208*S^{1.5}$ 

 $ln K2 = -9.226508 - 3351.6106/T - 0.2005743 ln (T) + (-0.106901773 - 23.9722/T)S^{0.5} + 0.1130822*S - 0.008469343*S^{1.5}$ 

$$(\mathbf{H}^{+}) = 10^{-\rho H} \qquad \alpha_0 = \left(1 + \frac{K_1}{[H^{+}]} + \frac{K_1 K_2}{[H^{+}]^2}\right)^{-1} \qquad [\mathsf{H}_2 \mathsf{CO}_3^*] = \mathfrak{a} 0 \cdot \mathsf{DIC} \qquad pCO_2^{\text{water}} = \frac{[H_2 CO_3^*]}{K_H}$$

 $F = FCO_2 * area * days$ 

A positive FCO2 corresponds to  $CO_2$  emission from water to the atmosphere, whereas a negative value indicates that carbon is absorbed in water. This distinction is crucial in understanding the role of urban lakes in either mitigating or contributing to atmospheric  $CO_2$  levels

[1]Re-estimating China's lake CO2 flux considering spatiotemporal variability [2] High Emissions of Carbon Dioxide and Methane From the Coastal Baltic Sea at the End of a Summer Heat Wave [3] Relationship Between Wind Speed and Gas Exchange Over the Ocean [4] Thermodynamics of the carbon dioxide system in the oceans [5] AQUATIC CHEMISTRY

## **Carbon storage**

This equation provides a bulk estimate of the amount of carbon present in the water body at a given time. It is important for understanding the lake's potential to act as a temporary or long-term carbon sink

#### SC =(DOC+DIC)\* h\* S

**SC** = The carbon sequestration of water body carbon storage

**DOC** = the concentration of dissolved organic carbon in water (mg/L)

**DIC** = the concentration of dissolved inorganic carbon in water (mg/L)

Chen, B., Zhang, M., Yang, R., & Tang, W. (2023). Spatiotemporal variations in the carbon sequestration capacity of plateau lake

**h** = the depth of the lake(m)

wetlands regulated by land use control under policy guidance. Land, 12(9), 1695

**S** = the water area

## • Zeu = Euphotic zone depth (m)

- Copt = Chlorophyll-a concentration in surface water (mg  $m^3$ )
- Dirr = Daily photoperiod in hours

 $\mathbf{P^{B}_{opt}} = 1.2956 + 2.749 \times 10^{-1}\text{T} + 6.17 \times 10^{-2}\text{T}^{2} - 2.05 \times 10^{-2}\text{T}^{3} + 2.462 \times 10^{-3}\text{T}^{4} - 1.348 \times 10^{-4}\text{T}^{5} + 3.4132 \times 10^{-5}\text{T}^{6} - 3.27 \times 10^{-8}\text{T}^{7}$  $\mathbf{Zeu} = 1.7239 \times \text{SD} + 0.1685$ 

Tian, Y., Zhao, Y., Zhang, X., Li, S., & Wu, H. (2023). Incorporating carbon sequestration into lake management: A potential perspective on climate change. Science of the Total Environment, 895, 164939.

## **Primary Productivity**

Carbon Sequestration = Average Primary Productivity × Lake Area

 $\mathbf{PP_{eu}} = 0.66125 \times \mathsf{P^B_{opt}} \times (\mathsf{E_0} / (\mathsf{E_0} + 4.1)) \times \mathsf{Z_{eu}} \times \mathsf{C_{opt}} \times \mathsf{D_{irr}}$ 

- $PP_{eu} = Primary productivity in the euphotic zone (mg C m<sup>2</sup> d<sup>1</sup>)$
- $P^{B}_{opt} = Optimal photosynthetic rate per unit chlorophyll (mg C mg<sup>1</sup>Chl-a h<sup>1</sup>)$
- E0 = Daily surface irradiance (mol photons  $m^{-2} d^{-1}$ ), assumed between 20 and 23

## CO<sub>2</sub> calculation based on modelling technique

- **Satellite imagery** extracts lake parameters like chlorophylla, water temperature, transparency, and radiation levels.
- Lakes are classified into **eutrophic**, **DOC**, and endorheic based on their biogeochemical characteristics and carbon processes.
- **Carbon cycle parameters** vary for each lake type, including factors like dissolved organic carbon (DOC), CDOM, and land use (LULC).
- Advanced modeling techniques such as regression, analytical models, and machine learning are applied to estimate long-term CO<sub>2</sub> fluxes.
- The central carbon cycle includes processes like photosynthesis, respiration, mineralization, and carbonate equilibrium.
- This framework enables **regional CO<sub>2</sub> monitoring**, supporting climate impact assessments and sustainable lake management.



Duan, H., Xiao, Q., & Qi, T. (2023). Measuring lake carbon dioxide from space: Opportunities and challenges. The Innovation Geoscience, 1(2), 100025.

## Summary of literature review

- > Three main methods to estimate carbon sequestration in lakes were identified:
- $\succ$  CO<sub>2</sub> Flux Method Calculates the net exchange of CO<sub>2</sub> between the lake surface and atmosphere.
- > Carbon Storage Method Measures the amount of carbon stored in water and sediments.
- Primary Productivity Method Estimates the amount of carbon fixed by aquatic plants and algae through photosynthesis.
- > For each method, **standard formulas** were reviewed to quantify carbon sequestration accurately.
- Satellite-based approach is widely used for large-scale assessments, enabling:
- Detection of lake boundaries using NDWI (Normalized Difference Water Index) from temporal remote sensing data.
- > Estimation of lake-specific parameters such as **chlorophyll-a**, water temperature, **DIC**, and transparency.
- Different lake types (eutrophic, DOC, and endorheic) were studied, each showing unique carbon dynamics and influencing factors.
- > Various **modeling techniques** (e.g., regression, analytical models, machine learning) are applied to:
- Predict long-term CO<sub>2</sub> fluxes.
- Support regional carbon budget estimation and climate policy planning.

## **Required Datasets and Data Sources**

| No. | Step                                                                     | Data source                                                                      | Tool/Software<br>Used                    |
|-----|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------|
| 1   | Water BodySentinel-2 MSI satellite imageryIdentification(10m resolution) |                                                                                  | ArcGIS Pro, Google<br>Earth Engine (GEE) |
| 2   | Lab Testing of Water<br>Samples                                          | Certified laboratory analysis of<br>water samples                                | Laboratory Analysis                      |
| 3   | Band Value<br>Extraction                                                 | Extract Sentinel-2 band values for the exact pixel location of each water sample | Google Earth Engine<br>(GEE)             |

## Methodology



## **Stagnant Water Bodies Detect**



Water bodies detection using Google Earth Engine



Using Google Earth Engine and Sentinel-2 data, approximately **130** water bodies were identified through NDWI index analysis for the Ahmedabad District.

- •Manual Method: Involves downloading satellite images and processing them in ArcGIS Pro to compute NDWI and extract lake boundaries manually.
  - This process is **time-consuming, repetitive**, and less efficient for **temporal analysis**.

•Google Earth Engine (GEE) Method: Enables cloud-based processing of large-scale temporal satellite data (e.g., Sentinel-2) and automatic NDWI calculation.

• Offers **fast, accurate**, and **scalable** lake area extraction across multiple timeframes.

**Conclusion**: Due to its **efficiency and reliability**, the **GEE method was adopted** in this study for calculating lake area and monitoring temporal changes.

## Selected Lakes for Calculation of Carbon Sequestration



## Calculation of Carbon Sequestration based on ground truth data

| Column 1      | Column 2 | Column 3    | Column 4 | Column 5      | Column 6 | Column 7 | Column 8 | Column 9 |
|---------------|----------|-------------|----------|---------------|----------|----------|----------|----------|
| Lake Name     | рц       | Temperature | Salinity | Chlorophyll-A | DOC      | DIC      | Area     | Depth    |
| Lake Name     | ГП       | Co          | mg/L     | µg/L          | mg/L     | mg/L     | m²       | m        |
| Chharodi Lake | 9.5      | 28          | 0.4536   | 5.1           | 12       | 60       | 25502.9  | 3.9      |
| Makrba Lake   | 9.1      | 27          | 0.432    | 5.1           | 6.1      | 48       | 63606.8  | 10.8     |
| Shilaj Lake   | 9.3      | 29          | 0.2898   | 17            | 5.8      | 35       | 39412.7  | 6.5      |
| Isanpur Lake  | 9.3      | 28          | 0.1872   | -             | 5.9      | 47       | 27115.4  | -        |
| Malek Saban   | 9.1      | 29          | 0.1764   | -             | 5.3      | 60       | 70294.8  | 7.8      |

Column 1:- Selected Lakes for carbon sequestration calculation Columns 2 to 7:- Water quality parameters (Ground measurements) Column 8:- Lake area based on the GEE method Column 9:- Lake depth

## **CO<sub>2</sub> Flux Calculation**

#### Example of Chharodi Lake

Data Required: pH-9.5, Temperature- 28°C, Salinity- 0.4536 ppt, DIC- 60 mg/L, wind speed(u)- 3.5 m/s,  $K_{H}$  = 0.03356,  $_{n}CO^{2}$  air – 0.000355 atm

SC = 1911.1 – 118.11\*T + 3.4527\*T<sup>2</sup> - 0.04132\*T<sup>3</sup>

 $= 1911.1 - 118.11*28 + 3.4527*(28)^2 - 0.04132*(28)^3$ 

SC = 403.88

$$k = 0.251 * u^{2} * \left(\frac{sc}{660}\right)^{-0.5}$$
$$k = 0.251 * 3.5^{2} * \left(\frac{403.88}{660}\right)^{-0.5}$$

k = 3.90

$$(H^+) = 10^{-pH}$$

= 10<sup>-9.5</sup>

 $(H^+)$  = 3.16 x 10<sup>-10</sup> mol/l

Temperature = 301.15 K

ln K1 = 2.83655 - 2307.1266/T - 1.5529413 ln (T) + (-0.20760841 - 4.0484/T) \*S<sup>0.5</sup> + 0.08468345\*S - 0.00654208\*S<sup>1.5</sup>

=  $2.83655 - 2307.1266/301.15 - 1.5529413 \ln (301.15) + (-0.20760841 - 4.0484/301.15) * 0.4536^{0.5} + 0.08468345*0.4536 - 0.00654208*0.4536^{1.5}$ 

K1 = 1.03 x 10<sup>-6</sup>

ln K2 = -9.226508 - 3351.6106/T - 0.2005743 ln (T) + (-0.106901773 - 23.9722/T) \*S<sup>0.5</sup> + 0.1130822\*S - 0.008469343\*S<sup>1.5</sup>

= -9.226508 - 3351.6106/301.15 - 0.2005743 ln (301.15) + (-0.106901773 - 23.9722/301.15) \*0.4536  $^{0.5}$  + 0.1130822\*0.4536 - 0.008469343\*0.4536  $^{1.5}$ 

K2 = 4.73 x 10<sup>-10</sup>

 $a0=[1+(K1/[H^+]) + (K1K2/[H^+]^2)]^{-1}$ 

 $= [1 + (1.03 \times 10^{-6}/3.16 \times 10^{-10}) + (1.03 \times 10^{-6})(4.73 \times 10^{-10})/(3.16 \times 10^{-10})^{2})]^{-1}$ 

=0.00012

## CO<sub>2</sub> Flux Calculation

DIC = 0.005 mol/l

 $[H_2CO_3] = \alpha 0 \cdot DIC$ 

=  $0.00012 \times 0.005$  =  $[H_2CO_3] = 6.12 \times 10^{-7}$ 

 $_{P}CO_{2}^{water} = [H_{2}CO_{3}] / K_{H}$ 

 $= 6.12 \times 10^{-7} / 0.03356$ 

= 1.82 x 10<sup>-5</sup> atm

 $FCO_2 = k * K_H * (pCO_2 - pCO_2 air)$ 

=3.93 \* 0.03356 \* (1.82 x 10<sup>-5</sup> – 0.000355)

 $= -4.44 \times 10^{-5} \text{ mol/m}^2/\text{day}$ 

F= FCO<sub>2</sub> \*Lake area \* days in Year

= - 4.44 x 10<sup>-5</sup> \* 25502.9 \* 365

= - 413.51 mol/year

CO<sub>2</sub> Flux = - 4962.33 gC/year

## **Carbon Storage Calculation**

#### Example of Chharodi Lake

Data Required: DOC – 12 mg/L, DIC – 60 mg/L, h–3.9 m, S - 25502.9 m<sup>2</sup>

SC =(DOC+DIC) \* h\* S

= (12 + 60) \* 3.9 \* 25502.9

- = 7161214.32 mg/L
- = 7161.21 gC

## **Primary Productivity Calculation**

#### **Example of Chharodi Lake**

Data Required: Temperature – 28 °C, Chlorophyll-a – 5.1 mg/m<sup>3</sup>, E<sub>0</sub> – 21, SD – 0.34m, Dirr – 12 hr

 $P^{B}_{opt} = 1.2956 + 2.749 \times 10^{-1}T + 6.17 \times 10^{-2}T^{2} - 2.05 \times 10^{-2}T^{3} + 2.462 \times 10^{-3}T^{4} - 1.348 \times 10^{-4}T^{5} + 3.4132 \times 10^{-5}T^{6} - 3.27 \times 10^{-8}T^{7} + 2.462 \times 10^{-3}T^{4} - 1.348 \times 10^{-4}T^{5} + 3.4132 \times 10^{-5}T^{6} - 3.27 \times 10^{-8}T^{7} + 2.462 \times 10^{-3}T^{4} - 1.348 \times 10^{-4}T^{5} + 3.4132 \times 10^{-5}T^{6} - 3.27 \times 10^{-8}T^{7} + 2.462 \times 10^{-3}T^{4} - 1.348 \times 10^{-4}T^{5} + 3.4132 \times 10^{-5}T^{6} - 3.27 \times 10^{-8}T^{7} + 2.462 \times 10^{-3}T^{4} - 1.348 \times 10^{-4}T^{5} + 3.4132 \times 10^{-5}T^{6} - 3.27 \times 10^{-8}T^{7} + 3.4132 \times 10^{-5}T^{7} + 3.4132 \times 10^{-5}T^{6} - 3.27 \times 10^{-8}T^{7} + 3.4132 \times 10^{-5}T^{6} - 3.27 \times 10^{-8}T^{7} + 3.4132 \times 10^{-5}T^{7} + 3.4132 \times 10^$ 

 $= 1.2956 + 2.749 \times 10^{-1} (28) + 6.17 \times 10^{-2} (28)^2 - 2.05 \times 10^{-2} (28)^3 + 2.462 \times 10^{-3} (28)^4 - 1.348 \times 10^{-4} (28)^5 + 3.4132 \times 10^{-5} (28)^6 - 3.27 \times 10^{-8} (28)^7 + 3.4132 \times 10^{-5} (28)^6 - 3.27 \times 10^{-8} (28)^7 + 3.4132 \times 10^{-5} (28)^6 - 3.27 \times 10^{-8} (28)^7 + 3.4132 \times 10^{-5} (28)^6 - 3.27 \times 10^{-8} (28)^7 + 3.4132 \times 10^{-5} (28)^6 - 3.27 \times 10^{-8} (28)^7 + 3.4132 \times 10^{-5} (28)^6 - 3.27 \times 10^{-8} (28)^7 + 3.4132 \times 10^{-5} (28)^6 - 3.27 \times 10^{-8} (28)^7 + 3.4132 \times 10^{-5} (28)^6 - 3.27 \times 10^{-8} (28)^7 + 3.4132 \times 10^{-5} (28)^6 - 3.27 \times 10^{-8} (28)^7 + 3.4132 \times 10^{-5} (28)^6 - 3.27 \times 10^{-8} (28)^7 + 3.4132 \times 10^{-5} (28)^6 - 3.27 \times 10^{-8} (28)^7 + 3.4132 \times 10^{-5} (28)^6 - 3.27 \times 10^{-8} (28)^7 + 3.4132 \times 10^{-5} (28)^6 - 3.27 \times 10^{-8} (28)^7 + 3.4132 \times 10^{-5} (28)^6 - 3.27 \times 10^{-8} (28)^7 + 3.4132 \times 10^{-5} (28)^6 - 3.27 \times 10^{-8} (28)^7 + 3.4132 \times 10^{-5} (28)^6 - 3.27 \times 10^{-8} (28)^7 + 3.4132 \times 10^{-5} (28)^6 - 3.27 \times 10^{-8} (28)^7 + 3.4132 \times 10^{-5} (28)^6 - 3.27 \times 10^{-8} (28)^7 + 3.4132 \times 10^{-5} (28)^6 + 3.4132 \times 10^{-5} (28)^5 + 3.4132 \times 10^{-5} \times 10^{-5} (28)^5 + 3.4132 \times 10^{-$ 

#### P<sup>B</sup><sub>opt</sub>= 14807.33

Zeu = 1.7239 \* SD + 0.1685

= 1.7239 \* 0.34 + 0.1685

#### = 0.754 m

 $PP_{eu} = 0.66125 \times P^{B}_{opt} \times (E_{0} / (E_{0} + 4.1)) \times Z_{eu} \times C_{opt} \times D_{irr}$ 

= 0.66125 × 14807.33× (21 / (21+ 4.1)) × 0.754 × 5.1 × 12

#### = 378330.52 mgC/m2/day

Carbon Sequestration = Average Primary Productivity × Lake Area

= 378330.52 x 25502.9

= 9648525495 mgC/ day

= 9648.52 gC/day

## **Calculation of Carbon Sequestration**

| Lake Name     | Co2 Flux<br>gC/year | Carbon storage<br>gC | Primary productivity<br>gC/day |
|---------------|---------------------|----------------------|--------------------------------|
| Chharodi Lake | -4962.33            | 7161.21              | 9648.52                        |
| Makrba Lake   | -10627.3            | 37164.18             | 22442.92                       |
| Shilaj Lake   | -7801.33            | 10452.24             | 64149.61                       |
| Isanpur Lake  | -5113.15            | -                    | -                              |
| Malek Saban   | -11938.4            | 35803.95             | -                              |

Due to the absence of this critical water quality parameter, carbon sequestration could not be calculated for these two lakes

\_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_

# **Multiple Linear Regression**

Multiple Linear Regression is a statistical method used to model the relationship between one **dependent variable** and **two or more independent variables**.

## **Equation Format**

- •Y= $\beta$ 0+ $\beta$ 1X1+ $\beta$ 2X2+...+ $\beta$ nXn+ $\epsilon$
- •Y: Dependent variable (e.g., carbon-related parameter)
- • $X_1, X_2$ ...: Independent variables (e.g., band values, weather data)

• $\beta$ : Coefficients,  $\varepsilon$ : Error term

# Y Data points Line of Regression

Independent Variable

Source:https://www.analyticsvidhya.com/

## Advantages

Easy to implement Good interpretability Useful baseline for model comparison

https://www.spiceworks.com/tech/artificialintelligence/articles/what-is-linear-regression/

## R2 (coefficient of determination)

 $R^2$  measures how well the independent variables explain the variability of the dependent variable.  $0 \le R2 \le 1$  R<sup>2</sup> = 1: Perfect prediction (all data points fit the model exactly)
R<sup>2</sup> = 0: Model explains none of the variability

**Higher R<sup>2</sup> =** Better model performance

| Water quality parameters | Equation                                                                                                    | R2   | Adj.R2 |
|--------------------------|-------------------------------------------------------------------------------------------------------------|------|--------|
| PH                       | 6.15 +(0.00094 * WVP)+(0.00393 * B3)+(-0.000712 * B11) +<br>(0.00086 * B1) +(0.108 * TCI_B) + (-0.014 * B2) | 0.52 | 0.41   |
| DIC                      | 82.56+(-0.281 * AOT)+(0.0219 * WVP)+(-0.0344 * B11) + (0.0232<br>* B12)                                     | 0.94 | 0.93   |
| COD                      | 198.78+(-0.210* B8A)+(0.114 * B7)+(-0.473 * AOT) + (0.077 * B6)                                             | 0.58 | 0.50   |
| Turbidity                | 164.64 +(-0.49759 * AOT)+(0.39329 * B7)+(-0.39857 * B8A)                                                    | 0.56 | 0.51   |

A model was built to predict water quality parameters using **only 32 data points** for training and testing, which resulted in low accuracy.

\_\_\_\_\_

## Technique to build a water quality parameter prediction equation





# Data set for modelling

Dependent variable

| ^  | <b>B1</b> <sup>‡</sup> | <b>B2</b> <sup>‡</sup> | вз 🌣 | <b>B4</b> <sup>‡</sup> | <b>B5</b> <sup>‡</sup> | <b>B6</b> <sup>‡</sup> | <b>B7</b> <sup>‡</sup> | <b>B8</b> <sup>‡</sup> | <b>B8A</b> <sup>‡</sup> | <b>B9</b> <sup>‡</sup> | B11 <sup>‡</sup> | B12 <sup>‡</sup> | AOT 🍦 | WVP <sup>‡</sup> | SCL 🍦 | TCI_R <sup>‡</sup> | TCI_G 🍦 | TCI_B 🗢 | Dissolved.Inorganic.Carbon |
|----|------------------------|------------------------|------|------------------------|------------------------|------------------------|------------------------|------------------------|-------------------------|------------------------|------------------|------------------|-------|------------------|-------|--------------------|---------|---------|----------------------------|
| 1  | 614                    | 833                    | 1122 | 1066                   | 1722                   | 2477                   | 2687                   | 2710                   | 2635                    | 2782                   | 2015             | 1273             | 238   | 1243             | 5     | 110                | 114     | 85      | 3.240                      |
| 2  | 434                    | 590                    | 794  | 784                    | 898                    | 1000                   | 1027                   | 1157                   | 949                     | 799                    | 920              | 673              | 234   | 378              | 5     | 81                 | 81      | 59      | 3.350                      |
| 3  | 405                    | 506                    | 814  | 542                    | 1111                   | 2982                   | 3819                   | 3700                   | 3492                    | 2692                   | 1522             | 895              | 168   | 2080             | 4     | 57                 | 83      | 52      | 49.000                     |
| 4  | 239                    | 564                    | 888  | 680                    | 1271                   | 2177                   | 2313                   | 3311                   | 2503                    | 1346                   | 1304             | 780              | 168   | 1681             | 4     | 72                 | 90      | 58      | 51.000                     |
| 5  | 639                    | 1236                   | 1650 | 2070                   | 2060                   | 2322                   | 2492                   | 3189                   | 2603                    | 2563                   | 2693             | 2431             | 168   | 1915             | 5     | 212                | 169     | 125     | 44.000                     |
| 6  | 438                    | 1224                   | 1768 | 2282                   | 2759                   | 2808                   | 2859                   | 2813                   | 2828                    | 2013                   | 3722             | 3843             | 168   | 1980             | 5     | 229                | 179     | 129     | 41.000                     |
| 7  | 354                    | 720                    | 1126 | 894                    | 1187                   | 1927                   | 2435                   | 3465                   | 1786                    | 994                    | 1032             | 663              | 168   | 1497             | 5     | 91                 | 114     | 75      | 57.000                     |
| 8  | 709                    | 1036                   | 1362 | 1640                   | 1660                   | 2112                   | 2428                   | 2696                   | 2038                    | 2315                   | 1921             | 1576             | 168   | 1990             | 5     | 168                | 139     | 104     | 59.000                     |
| 9  | 555                    | 835                    | 1184 | 1274                   | 1449                   | 1714                   | 1830                   | 2083                   | 1616                    | 2296                   | 1482             | 1351             | 168   | 1458             | 5     | 131                | 121     | 87      | 48.000                     |
| 10 | 358                    | 628                    | 966  | 774                    | 1435                   | 1963                   | 2076                   | 1773                   | 1795                    | 1094                   | 1225             | 998              | 168   | 1717             | 5     | 80                 | 99      | 62      | 47.000                     |
| 11 | 373                    | 574                    | 838  | 738                    | 1189                   | 1587                   | 1948                   | 1804                   | 1836                    | 948                    | 1362             | 1163             | 168   | 1673             | 5     | 75                 | 87      | 58      | 53.000                     |
| 12 | 738                    | 601                    | 884  | 928                    | 1495                   | 1717                   | 1689                   | 1278                   | 1686                    | 2046                   | 1891             | 1860             | 168   | 1727             | 5     | 101                | 91      | 60      | 53.000                     |
| 13 | 459                    | 527                    | 874  | 592                    | 1418                   | 3585                   | 3877                   | 4157                   | 4128                    | 2624                   | 1631             | 909              | 300   | 1772             | 4     | 62                 | 90      | 53      | 5.886                      |
| 14 | 334                    | 580                    | 914  | 744                    | 1523                   | 2481                   | 2691                   | 3596                   | 2625                    | 1524                   | 1388             | 823              | 300   | 1526             | 4     | 78                 | 94      | 60      | 6.003                      |
| 15 | 396                    | 666                    | 1058 | 876                    | 1471                   | 3002                   | 2798                   | 3536                   | 2606                    | 1840                   | 1129             | 781              | 300   | 1738             | 4     | 90                 | 107     | 71      | 5.562                      |
| 16 | 615                    | 932                    | 1294 | 1384                   | 1907                   | 2026                   | 1890                   | 2380                   | 1795                    | 2098                   | 1800             | 1280             | 300   | 1785             | 5     | 140                | 133     | 95      | 5.051                      |

### Independent variable

# Python Language Script(MLR)

| import numpy as np                      |                                                              |                                                                                                      |                                                                                                 |
|-----------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| from sklearn import                     | linear model                                                 |                                                                                                      | • • •                                                                                           |
| <pre>from sklearn.model_se</pre>        | election import train_test_split,cross_val_sco               | pre                                                                                                  | : import math                                                                                   |
| <pre>from sklearn.preproce</pre>        | essing import StandardScaler                                 |                                                                                                      | import numpy as np                                                                              |
| <pre>from sklearn.metrics</pre>         | <pre>import r2_score</pre>                                   |                                                                                                      |                                                                                                 |
| <pre>import matplotlib.pyp</pre>        | plot as plt                                                  |                                                                                                      |                                                                                                 |
| import statsmodels.ap                   | pi <b>as</b> sm                                              |                                                                                                      | # Predictions                                                                                   |
|                                         |                                                              |                                                                                                      | <pre>y_pred = model.predict(X)</pre>                                                            |
| data = pd.read_csv("[                   | D:/ADI_data/ADI.csv")                                        |                                                                                                      |                                                                                                 |
|                                         |                                                              |                                                                                                      | # Manual R <sup>2</sup> Calculation (Pearson)                                                   |
| <pre>data_cleaned = data.c</pre>        | <pre>dropna(subset=['Dissolved Inorganic Carbon'])</pre>     |                                                                                                      | The second contraction (real point)                                                             |
| 1 1 1 T T T T T T T T T T T T T T T T T |                                                              |                                                                                                      | $sum_y = y.sum()$ # $sum_y = uccuacy(Ph)$                                                       |
| band_columns = ['B1'                    | , 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'E<br>d columns] | 88A', 'B9', 'B11', 'B12','AOF','WVP','SCL','TCI_R','TCI_G','TCI_B']                                  | <pre>sum_y_pred = y_pred.sum() # Sum of predicted y</pre>                                       |
| <pre>v = data_cleaned['Dis</pre>        | ssolved Inorganic Carbon'l                                   |                                                                                                      | sum vv pred = (v * v pred).sum() # Sum of (v * v pred)                                          |
| ,                                       | 1                                                            |                                                                                                      | (1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,                                             |
| #X_train, X_test, y_t                   | train, y_test = train_test_split(X, y, test_si               | ze=0.15, random_state=34)                                                                            | 30m_y2 - (y 2).30m() # 30m 0j y                                                                 |
|                                         |                                                              |                                                                                                      | <pre>sum_y_pred2 = (y_pred***2).sum() # Sum of y_pred*</pre>                                    |
| <pre>model=linear_model.L</pre>         | inearRegression()                                            |                                                                                                      | n = len(y) # Number of samples                                                                  |
| <pre>model.fit(X,y)</pre>               |                                                              |                                                                                                      |                                                                                                 |
| • LinearRegression                      |                                                              |                                                                                                      | # Pearson correlation coefficient (n)                                                           |
|                                         |                                                              |                                                                                                      | * rearson correction coefficient (r)                                                            |
| LinearRegression()                      |                                                              |                                                                                                      | numerator = (n * sum_yy_pred) - (sum_y * sum_y_pred)                                            |
|                                         |                                                              | coef std err t P>iti [0.025 0.975]                                                                   | <pre>denominator = math.sqrt((n * sum_y2 - sum_y**2) * (n * sum_y_pred2 - sum_y_pred**2))</pre> |
| : abc=sm.add_constant()                 | K)                                                           | const 41.6753 40.978 1.017 0.328 -46.852 130.203                                                     | r = numerator / denominator                                                                     |
| abc1=sm.OLS(y,abc)<br>abc2=abc1 fit()   |                                                              | B1 -0.0321 0.019 -1.688 0.115 -0.073 0.009                                                           |                                                                                                 |
| abc2.summary()                          |                                                              | B2 0.0952 0.107 0.893 0.388 -0.135 0.325                                                             |                                                                                                 |
|                                         | OLS Regression Results                                       | B3 0.1454 0.140 1.035 0.319 -0.158 0.449                                                             | # R-squared (R <sup>2</sup> )                                                                   |
| Dep. Variable: Diss                     | solved Inorganic Carbon <b>R-squared:</b> 0.972              | <b>B4</b> -0.2412 0.122 -1.982 0.069 -0.504 0.022<br><b>B5</b> 0.0023 0.012 0.185 0.856 -0.024 0.029 | $r^{2} = r^{**} 2$                                                                              |
| Model:                                  | OLS Adi. B-squared: 0.933                                    | <b>B6</b> -0.0169 0.014 -1.195 0.254 -0.047 0.014                                                    | <pre>print(f"R<sup>2</sup> (Manual - Pearson Method) = {r2:.6f}")</pre>                         |
| Mathadi                                 |                                                              | <b>B7</b> 0.0065 0.010 0.645 0.530 -0.015 0.028                                                      |                                                                                                 |
| Method.                                 |                                                              | B8A 0.0056 0.013 0.445 0.664 -0.022 0.033                                                            | # Manual Adjusted R <sup>2</sup> Calculation                                                    |
| Date:                                   | Sun, 06 Apr 2025 Prob (F-statistic): 2.988-07                | <b>B9</b> 0.0037 0.004 0.834 0.420 -0.006 0.013                                                      | <pre>p = X.shape[1] # Number of features</pre>                                                  |
| Time:                                   | 16:08:22 <b>Log-Likelihood:</b> -88.421                      | B11 -0.0413 0.016 -2.506 0.026 -0.077 -0.006<br>B12 0.0274 0.012 2.303 0.038 0.002 0.053             | adj_r2 = 1 - ((1 - r2) * (n - 1) / (n - p - 1))                                                 |
| No. Observations:                       | 32 <b>AIC:</b> 214.8                                         | AOT -0.2409 0.027 -8.907 0.000 -0.299 -0.183                                                         | $print(f^{"}Adjusted R^2 (Manual) = \{adj r^2; .6f\}^{"})$                                      |
| Df Residuals:                           | 13 <b>BIC:</b> 242.7                                         | WVP 0.0258 0.005 4.959 0.000 0.015 0.037                                                             |                                                                                                 |
| Df Model:                               | 18                                                           | SCL 5.1343 8.309 0.618 0.547 -12.816 23.084                                                          | R² (Manual - Pearson Method) = 0.971941                                                         |
| Courselance Transa                      | nonrohust                                                    | TCLG -1.3151 1.533 -0.858 0.407 -4.627 1.997                                                         | $Adjusted P_2^2 (Magual) = 0.033000$                                                            |
| covariance type:                        | nomobust                                                     | TCI_B -0.8708 0.947 -0.920 0.375 -2.917 1.175                                                        | Aujusteu k (Handul) - 0.55000                                                                   |
|                                         |                                                              | Omnibus: 0.569 Durbin-Watson: 1.762                                                                  |                                                                                                 |
|                                         |                                                              | Prob(Omnibus): 0.752 Jarque-Bera (JB): 0.674                                                         |                                                                                                 |
|                                         |                                                              | Skew: -0.176 Prob(JB): 0.714                                                                         |                                                                                                 |
|                                         |                                                              | Kurtosis: 2.382 Cond. No. 2.48e+05                                                                   |                                                                                                 |
|                                         |                                                              |                                                                                                      |                                                                                                 |

- - - - -

# Python Language Script(CNN)

import numpy as np import numpy as np import netsorflow kerss.models import Sequential from tensorflow.kerss.layers import Conv1D, MaxPooling1D, Flatten, Dense, Dropout, BatchNormalization,GlobalAveragePooling1D from tensorflow.kerss.optimizers import Adam from sklearn.model\_selection import train\_test\_split from sklearn.metrics import r2\_score import matplotlib.pyplot as plt from permetrics.regression import RegressionMetric

data = pd.read\_csv("D:/ADI\_data/ADI.csv")
band\_columns = ['81', '82', '83', '84', '85', '86', '87', '88', '88A', '89', '811', '812','AOT','WP','SCL','TCI\_R','TCI\_6','TCI\_8']
X = data[band\_columns].values
y = data['PH'].values

X = X.reshape(X.shape[0], X.shape[1], 1)

X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size=0.25, random\_state=30)

scaler = StandardScaler()
X\_train\_reshaped = X\_train.reshape(X\_train.shape[0], -1)
X\_test\_reshaped = X\_test.reshape(X\_test.shape[0], -1)
scaler.fit(X\_train\_reshaped)

StandardScaler

StandardScaler()

X\_train\_scaled = scaler.transform(X\_train\_reshaped).reshape(X\_train.shape) X\_test\_scaled = scaler.transform(X\_test\_reshaped).reshape(X\_test.shape)

model = Sequential([

ConvlD(filters=32, kernel\_size=1, activation='relu', padding='same', input\_shape=(X\_train.shape[1], 1)),
BatchNormalization(),
ConvlD(filters=32, kernel\_size=1, activation='relu', padding='same'),
BatchNormalization(),
MaxPooling1D(pool\_size=2),

Conv1D(filters=64, kernel\_size=1, activation='relu', padding='same'), BatchNormalization(), Conv1D(filters=64, kernel\_size=1, activation='relu', padding='same'), BatchNormalization(), MaxPooling1D(pool\_size=2),

Conv10(filters=128, kernel\_size=1, activation='relu', padding='same'), BatchNormalization(), GlobalAveragePooling1D(), # Replaces Flatten() for variable length

Dense(128, activation='relu'), Dense(64, activation='relu'), Dense(1,activation='linear') # Output Layer for regression ])

optimizer = Adam(learning\_rate=0.006)
model.compile(optimizer=optimizer, loss='mse', metrics=['mae'])

model.summary()

history = model.fit(
 X\_train\_scaled, y\_train,
 validation\_split=0.20,
 epochs=200,
 batch\_size=16,
 # callbacks=[early\_stopping],
 verbose=1

| Epoch 1/200  |                                                                                     |
|--------------|-------------------------------------------------------------------------------------|
| 2/2          | - 2s 178ms/step - loss: 80.9593 - mae: 8.9508 - val_loss: 72.7461 - val_mae: 8.5186 |
| Epoch 2/200  |                                                                                     |
| 2/2          | - Os 22ms/step - loss: 40.5527 - mae: 6.2550 - val_loss: 64.4019 - val_mae: 8.0142  |
| Epoch 3/200  |                                                                                     |
| 2/2          | - 05 23ms/step - 1oss: 8.126/ - mae: 2.4333 - Val_1oss: 52.9595 - Val_mae: 7.2646   |
| 2/2          | - 0: 04ms/ston loss: 14 6374 mag. 2 0054 wal loss: 50 0021 wal mag. 7 0570          |
| 2/2          | - 05 24ms/step - 1055: 14.05/4 - mae: 5.0254 - Val_1055: 50.0051 - Val_mae: 7.05/9  |
| 2/2          | - 0s 21ms/step - loss: 10.7932 - mae: 2.8469 - val loss: 52.7267 - val mae: 7.2478  |
| Epoch 6/200  | os 11ms/step 10551 100/552 matt 110105 101_10551 520/207 101_matt /121/0            |
| 2/2          | - 0s 23ms/step - loss: 2.8723 - mae: 1.5166 - val loss: 53.0420 - val mae: 7.2679   |
| Epoch 7/200  |                                                                                     |
| 2/2          | - 0s 25ms/step - loss: 3.2744 - mae: 1.6342 - val_loss: 50.6353 - val_mae: 7.0999   |
| Epoch 8/200  |                                                                                     |
| 2/2          | - Os 19ms/step - loss: 1.7955 - mae: 1.0704 - val_loss: 46.8484 - val_mae: 6.8287   |
| Epoch 9/200  |                                                                                     |
| 2/2          | - 0s 22ms/step - loss: 3.1611 - mae: 1.3466 - val_loss: 42.8836 - val_mae: 6.5323   |
| Epoch 10/200 |                                                                                     |
| 2/2          | - US 25ms/step - loss: 3.6014 - mae: 1.6320 - Val_loss: 39.5976 - Val_mae: 6.2772   |
| 2/2          | - 0: 21ms/step - loss: 4 7014 - mag: 1 7271 - val loss: 37 8605 - val mag: 6 1255   |
| 2/2          | - 03 ZIMS/SCEP - 1055. 4.7014 - Mae. 1.7271 - Val_1055. 57.8005 - Val_Mae. 0.1555   |
| 2/2          | - 0s 24ms/step - loss: 3,0260 - mae: 1,4153 - val loss: 37,6164 - val mae: 6,1141   |
| Epoch 13/200 |                                                                                     |
| 2/2          | - 0s 22ms/step - loss: 1.6443 - mae: 1.0137 - val_loss: 37.0969 - val_mae: 6.0697   |
| Epoch 14/200 |                                                                                     |

y\_train\_pred = model.predict(X\_train\_scaled).flatten()
y\_test\_pred = model.predict(X\_test\_scaled).flatten()
1/1 \_\_\_\_\_\_ 0s 114ms/step

----- 0s 114ms/step 0s 116ms/step

sum\_x = y\_train.sum() sum\_y = y\_train\_pred.sum() sum\_xy = (y\_train \* y\_train\_pred).sum() sum\_x2 = (y\_train\_\*2).sum() sum\_y2 = (y\_train\_pred\*\*2).sum()

n = len(y\_train)

1/1 -

numerator = (n \* sum\_xy) - (sum\_x \* sum\_y)
denominator = math.sqrt((n \* sum\_x2 - sum\_x\*\*2) \* (n \* sum\_y2 - sum\_y\*\*2))

r = numerator / denominator R2 = r\*r print(f\*Pearson correlation coefficient (r) = {r:.6f}") print(f\*R-squared (R2) = (R2:.6f)")

Pearson correlation coefficient (r) = 0.525343 R-squared (R2) = 0.275985

CNN:-Convolutional Neural Networks

# **R** Language Script

| setwd("D:/ADI_data/")                                      |                                                                                                                                                                           |  |  |  |  |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Data = read.csv("ADI.csv")                                 |                                                                                                                                                                           |  |  |  |  |
| Data2 = Data[,c(4:21,38)]                                  | Coefficients:<br><u>Estimate Std. Error t value Pr(&gt; t )</u><br>(Intercent) 82 562546 7 580807 10 878 2 265 11 ***                                                     |  |  |  |  |
| Data3=na.omit(Data2)                                       | AOT       -0.281761       0.016384       -17.198       4.50e-16       ***         WVP       0.021946       0.003938       5.573       6.57e-06       ***                  |  |  |  |  |
| library("olsrr")                                           | B11       -0.034469       0.006547       -5.265       1.50e-05       ***         B12       0.023283       0.005628       4.137       0.000308       ***                   |  |  |  |  |
| model = lm(Dissolved.Inorganic.Carbon~ .+B1, data = Data3) | Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1                                                                                                             |  |  |  |  |
| a = ols_step_forward_p(model)                              | Residual standard error: 5.83 on 27 degrees of freedom<br>Multiple R-squared: 0.9453, Adjusted R-squared: 0.9372<br>F-statistic: 116.6 on 4 and 27 DF, p-value: < 2.2e-16 |  |  |  |  |

#### а

model2 = lm(Dissolved.Inorganic.Carbon~AOT+WVP+B11+B12, data = Data3) summary(model2)

#### Makrba lake time series for 2018 to 2025



| Year | Area (m²) | CO2 Flux(gC/year) |
|------|-----------|-------------------|
| 2018 | 48,835.95 | 53759.24          |
| 2019 | 65,969.77 | -9819.17          |
| 2020 | 72,200.23 | -5501.71          |
| 2021 | 73,574.62 | -7161.03          |
| 2022 | 70,184.49 | -5892.49          |
| 2023 | 65,969.73 | -9294.5           |
| 2024 | 65,420.01 | -7330.7           |
| 2025 | 63606.8   | -10627.3          |

•2018 shows high positive CO<sub>2</sub> flux, indicating strong carbon release

•From **2019 to 2025**, all values are **negative**, showing that the water bodies acted as **carbon sinks**.

•The area increased from 2018 to 2021, peaking in 2021, then slightly declined.

•CO<sub>2</sub> absorption (negative flux) was highest in 2025, suggesting better sequestration or updated ground truth accuracy.

#### Malek Saban lake time series for 2018 to 2025



| Year | Area (m²) | CO2 Flux(gC/year) |  |  |
|------|-----------|-------------------|--|--|
| 2018 | 73294.08  | 288303.94         |  |  |
| 2019 | 50656.91  | -7450.87          |  |  |
| 2020 | 98290.58  | 8522.41           |  |  |
| 2021 | 92702.79  | 2476.73           |  |  |
| 2022 | 96916.51  | -10884.22         |  |  |
| 2023 | 90595.91  | -6311.80          |  |  |
| 2024 | 40855.19  | -1396.03          |  |  |
| 2025 | 70294.8   | -11938.4          |  |  |

•2018 had the highest CO<sub>2</sub> release in a large area, indicating a strong carbon source that year.
•From 2019 onward, there was a shift to negative CO<sub>2</sub> flux in most years, suggesting that the area acted more as a carbon sink.

•2022 and 2025 recorded the highest CO<sub>2</sub> absorption, marking strong carbon sequestration.

•The area fluctuated significantly year to year, but larger area did not always correlate with higher flux, suggesting influence from other factors like water quality or temperature.

#### Chharodi Lake time series for 2018 to 2025



| Year | Area (m²) | CO2 Flux(gC/year) |  |  |  |
|------|-----------|-------------------|--|--|--|
| 2018 | 25448.04  | 271086.04         |  |  |  |
| 2019 | 24074.94  | -3425.22          |  |  |  |
| 2020 | 21603.36  | -1904.99          |  |  |  |
| 2021 | 13090.18  | 776.73            |  |  |  |
| 2022 | 21145.67  | -1708.28          |  |  |  |
| 2023 | 25081.88  | -3507.12          |  |  |  |
| 2024 | 25722.65  | -889.81           |  |  |  |
| 2025 | 25502.9   | -4962.33          |  |  |  |

•2018 shows an extremely high CO<sub>2</sub> emission, indicating a strong carbon source.

•From 2019 onwards,  $CO_2$  flux becomes mostly negative, meaning the area starts acting as a carbon sink.

•2021 is the only year with a slight positive flux, but it's very low compared to 2018.

•2025 shows the highest carbon absorption among all years, with a flux of -4962.33 gC/year.

•The area remains relatively stable after 2020, but CO<sub>2</sub> flux varies,

#### Isanpur Lake time series for 2018 to 2025



| Year | Area (m²) | CO2 Flux(gC/year) |
|------|-----------|-------------------|
| 2018 | 23733.66  | 68010.14          |
| 2019 | 25841.29  | -3830.41          |
| 2020 | 23367.13  | 9520.99           |
| 2021 | 27004.53  | -676.99           |
| 2022 | 25932.93  | 8802.95           |
| 2023 | 2199.26   | -320.64           |
| 2024 | 28865.27  | -3277.37          |
| 2025 | 27115.4   | -5113.15          |

•2018 recorded the highest CO<sub>2</sub> emission.

•2019, 2021, 2023, 2024, and 2025 show negative  $CO_2$  flux, meaning the area acted as a carbon sink in those years.

•2020 and 2022 again show positive flux, but much lower than 2018, suggesting an occasional return to carbon source behavior.

•The **area remains fairly consistent**, except for **2023**, where it drastically drops to **2,199.26 m<sup>2</sup>**, possibly due to dry-up or data anomaly.

#### Shilaj Lake time series for 2018 to 2025



| Year | Area (m²) | CO2           |  |  |
|------|-----------|---------------|--|--|
|      |           | Flux(gC/year) |  |  |
| 2018 | 31413.68  | 77581.36      |  |  |
| 2019 | 30314.66  | -3929.44      |  |  |
| 2020 | 31871.61  | 10392.34      |  |  |
| 2021 | 37183.52  | -2205.01      |  |  |
| 2022 | 40114.24  | 5264.03       |  |  |
| 2023 | 46708.37  | -6893.31      |  |  |
| 2024 | 35901.33  | -3828.04      |  |  |
| 2025 | 39412.7   | -7801.33      |  |  |

•2018 shows the highest CO<sub>2</sub> emission

2019, 2021, 2023, 2024, and 2025 show negative CO<sub>2</sub> flux, meaning the area functioned as a carbon sink in those years.
The area size gradually increases from 2018 to 2023, peaking at 46,708.37 m<sup>2</sup> in 2023, followed by a slight drop in 2024.

### One-at-a-time (OAT) Sensitivity Analysis

|            | -20%     | -15%    | -10%   | -5%    | 0 | +5%   | +10%  | +15%  | +20%  |
|------------|----------|---------|--------|--------|---|-------|-------|-------|-------|
| рН         | -1025.18 | -332.89 | -97.61 | -21.47 | - | 4.588 | 5.311 | 5.4   | 5.541 |
| Т          | -12.49   | -9.61   | -6.6   | -3.44  | - | 3.86  | 8.36  | 13.79 | 20.63 |
| DIC        | 1.08     | 0.81    | 0.54   | 0.27   | - | -0.27 | -0.54 | -0.81 | -1.08 |
| Wind speed | -36      | -27.75  | -18.99 | -9.75  | - | 10.25 | 21    | 32.25 | 44    |

**pH** has the **strongest impact**, even small decreases cause a large drop in  $CO_2$  sequestration. Wind speed increases  $CO_2$  flux significantly, more wind leads to more sequestration. **DIC** shows less DIC, more sequestration. **Overall**, **pH** and wind speed are the most sensitive factors influencing carbon sequestration in water bodies

## Conclusion

- Most lakes showed positive CO<sub>2</sub> flux (emission) in 2018 but gradually shifted to negative values, indicating increasing carbon sequestration over time.
- From 2019 onwards, several lakes consistently recorded negative flux values, reflecting improved conditions for carbon uptake. While sequestration generally improved, fluctuations across years indicate the influence of environmental factors and lake health dynamics.
- Larger surface area doesn't always mean higher sequestration. For example, in some years, smaller areas show better performance, implying that the **quality of water parameters** (like pH, DIC, temp) plays a bigger role than area alone.
- A small decrease in pH results in a large drop in CO<sub>2</sub> flux, making acidification a major threat to carbon sequestration efficiency.
- Across all locations, **2018 consistently records the highest positive CO<sub>2</sub> flux**, indicating carbon emission.
- The **limited dataset of only 32 sample points** constrains the model's performance and generalization ability. The current accuracy is suboptimal due to this **data sparsity**.
- Future studies should focus on collecting more sample data across seasons and spatial locations to enhance model training.

# References

Bernard, A., Villacorte, E., Maussen, K., Caudron, C., Robic, J., Maximo, R., ... & Solidum Jr, R. U. (2020). Carbon dioxide in Taal volcanic lake: A simple gasometer for volcano monitoring. *Geophysical Research Letters*, 47(24), e2020GL090884.

Chen, B., Zhang, M., Yang, R., & Tang, W. (2023). Spatiotemporal variations in the carbon sequestration capacity of plateau lake wetlands regulated by land use control under policy guidance. *Land*, 12(9), 1695.

Franco-Cisterna, B., Drost, A. M., van Santvoort, V., Sarkis, S., & McGowan, S. (2024). Freshwater Ecosystems: Carbon Sequestration Champions. *Frontiers for Young Minds*, 12:1302239. doi: 10.3389/frym.2024.1302239.

IPCC. (2021). Climate Change 2021: The Physical Science Basis. Cambridge University Press.

Ministry of Environment, Forest, and Climate Change, Government of India. (2022). *India's Third Biennial Update Report to the UNFCCC*. New Delhi: Government of India.

Ministry of Urban Development, Government of India. (2015). *Smart Cities: Mission Statement & Guidelines*. New Delhi: Government of India.

Qiang, S., Song, K., Shang, Y., Lai, F., Wen, Z., Liu, G., Tao, H., & Lyu, Y. (2023). Remote sensing estimation of CDOM and DOC with environmental implications for Lake Khanka. *Remote Sensing*, 15(10), 5707.

Skwierawski, A. (2022). Carbon sequestration potential in the restoration of highly eutrophic shallow lakes. *International Journal of Environmental Research* and Public Health, 19(10), 6308.

Tian, Y., Zhao, Y., Zhang, X., Li, S., & Wu, H. (2023). Incorporating carbon sequestration into lake management: A potential perspective on climate change. *Science of the Total Environment*, 895, 164939.

Wang, L., Xiao, C. D., Du, Z. H., Maher, D. T., Liu, J. F., & Wei, Z. Q. (2022). In-situ measurement on air-water flux of CH<sub>4</sub>, CO<sub>2</sub> and their carbon stable isotope in lakes of northeast Tibetan Plateau. *Advances in Climate Change Research*, 13(2), 279-289.

Wen, Z., Shang, Y., Lyu, L., Tao, H., Liu, G., Fang, C., ... & Song, K. (2024). Re-estimating China's lake CO<sub>2</sub> flux considering spatiotemporal variability. *Environmental Science and Ecotechnology*, 19, 100337.

Wen, Z., Song, K., Shang, Y., Fang, C., Li, L., Lv, L., ... & Chen, L. (2017). Carbon dioxide emissions from lakes and reservoirs of China: A regional estimate based on the calculated pCO<sub>2</sub>. *Atmospheric Environment*, 170, 71-81.

Xiao, Q., Duan, H., Qin, B., Hu, Z., Zhang, M., Qi, T., & Lee, X. (2022). Eutrophication and temperature drive large variability in carbon dioxide from China's Lake Taihu. *Limnology and Oceanography*, 67(2), 379-391.

Xun, F., Li, B., Chen, H., Zhou, Y., Gao, P., & Xing, P. (2022). Effect of salinity in alpine lakes on the southern Tibetan Plateau on greenhouse gas diffusive fluxes. *Journal of Geophysical Research: Biogeosciences*, 127(7), e2022JG006984.